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Abstract. In a previous study, nonlinear autoregressive 
(NLAR) models applied to ictal electroencephalogram 
(EEG) recordings in six patients revealed nonlinear 
signal interactions that correlated with seizure type and 
clinical diagnosis. Here we interpret these models from 
a theoretical viewpoint. Extended models with multiple 
nonlinear terms are employed to demonstrate the inde- 
pendence of nonlinear dynamical interactions identified 
in the 'NLAR fingerprint' of patients with 3/s seizure 
discharges. Analysis of the role of periodicity in the EEG 
signal reveals that the fingerprints reflect the dynamics 
not only of the periodic discharge itself, but also of the 
fluctuations of each cycle about an average waveform. 
A stability analysis is used to make qualitative inferences 
concerning the network properties of the ictal generators. 
Finally, the NLAR fingerprint is analyzed in the context 
of Volterra-Weiner theory. 

1 Introduction 

We introduced the nonlinear autoregressive (NLAR) 
'fingerprint' as a pattern of nonlinear signal interactions 
that characterizes an ictal electroencephalogram (EEG) 
discharge (Schiff et al. 1991, 1994). This NLAR finger- 
print was demonstrated to correlate with the clinical 
diagnosis and type of seizure discharge. Here we present 
a theoretical analysis and interpretation of the NLAR 
fingerprint within the context of nonlinear systems the- 
ory. A detailed analysis of NLAR models with multiple 
nonlinear terms allows the statistical significance of sep- 
arate nonlinear interactions in the fingerprint to be 
examined, which later provides a basis to interpret the 
NLAR fingerprint in the context of Volterra-Wiener 
theory. The role of periodicity in the EEG waveforms is 
addressed through analysis of 'periodicized' data. Fur- 
thermore, the nonlinear difference equation form of the 
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NLAR models is used to make qualitative inferences 
concerning the network properties of the generators of 
ictal activity. 

As with linear autoregressive (LAR) and other 
models, description of the activity of populations of corti- 
cal neurons as recorded in the EEG does not specify 
the microdynamics of the underlying cellular elements 
(Wilson and Cowan 1972). Rather, the aim is to provide 
a window on the overall circuit properties and feedback 
interactions underlying ictal activity. The specific pat- 
terns of nonlinear interactions evident in the NLAR 
fingerprints are interpreted in the context of simple non- 
linear feedback systems treated in Volterra-Wiener 
theory. 

2 Methods 

EEG records from six seizure patients were studied. The 
procedure for obtaining artifact-free samples of ictal dis- 
charges and clinical information is presented in Schiff 
et al. (1994). We model the EEG using a NLAR equation 
in which a sample Yn of the EEG signal is repre- 
sented as a sum of a random term, x,, a linear combina- 
tion of values of the EEG at r prior times, and a quadratic 
term which allows EEG values at two prior times to 
interact. A model with all such possible terms takes the 
form 

i=1 j = l k = l  
(1) 

This model and our approach to fitting the model 
parameters ai and Cj.k are discussed in detail in Schiff 
et al. (1994). Therein, we focused on models of the form 
(1) in which only one term Cj.k is included. The residual 
variance for the one-term NLAR model necessarily 
depends on the choice of lags (j, k) for the single in- 
cluded nonlinear term, and the dependence was called 
the NLAR fingerprint. Here we expand our focus to 
include models of the form (1) with up to three nonlinear 
terms. 
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3 Results 

3.1 Independence of fingerprint features 

Nonlinear fingerprints derived from ictal discharges dis- 
play multiple local minima and ridges [i.e., loci of lags 
(j,k) which correspond to nonlinear terms (1) which 
provide a substantial reduction in variance]. Each of 
these large reductions in variance corresponds to a quad- 
ratic interaction of signal values at prior times, which 
contributes to the current value. Since there are strong 
first-order correlations between serial values of the ictat 
EEG, a quadratic interaction at one pair of lags might 
also be manifest at a second pair of lags. This would 
result in a single, nonlinear interaction generating two or 
more minima within a fingerprint. The first question we 
address is whether these observed multiple minima rep- 
resent independent dynamical features. We constructed 
NLAR models with two or more nonlinear terms, with 
each term drawn from a separate local minimum. As in 
Schiff et al. (1994), we used the Akaike criterion (AIC) to 
estimate the significance of the reduction in variance 
accompanying the addition of a nonlinear term. The AIC 
is similarly: 

AIC = Nlog V + 2J  (2) 

where N represents the number of data points, J is the 
number of model terms, and V is the residual variance. 
Further rationale for the use of the AIC may be found in 
Victor and Canel (1992). We then compared the AIC 
obtained from this NLAR model with multiple nonlinear 
terms to the AIC obtained from NLAR models contain- 
ing only one of the nonlinear terms. If the selected min- 
ima represented the same nonlinear interaction, then the 
addition of multiple terms would not improve the model, 
i.e., the AIC should not decrease. Conversely, if these 
minima represented statistically independent influences, 
then the AIC would be expected to decrease. 

Figure 1 shows the results of this analysis applied to 
the second data segment from patient 1. We considered 
pairwise and three-way combinations of the four minima 
that were most consistent across patients: lags (1, 9), (5, 8), 
(8, 17), and (15, 15). As seen in Fig. 1, all pairwise combi- 
nations of non-linear terms resulted in a decrease in the 
AIC. Furthermore, models with three nonlinear terms 
had a lower AIC than models with only two terms. This 
argues for a statistical independence of the interactions. 

The AIC is only an approximate measure of signifi- 
cance for NLAR models with two or more terms (Victor 
and Canel 1992). Therefore, as an internal control for this 
procedure, we also chose two nonlinear terms from the 
same feature of the fingerprint. Inclusion of lags (5, 8) and 
(6, 9), both within the off-diagonal ridge, resulted in a rise 
in the AIC. This indicates that the interactions at these 
lags are not statistically independent and confirms the 
intuition that this ridge is a single feature. 

Analysis of NLAR models with multiple nonlinear 
terms derived from the minima listed in Table 2 in Schiff 
et al. (1994) revealed a similar finding in patients 2-5. 
That is, minima which were well-separated on the finger- 
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Fig. 1. Akaike criterion (AIC) values for nonlinear autoregressive 
(NLAR) models composed of one, two, and three non-linear terms. In 
all cases, combinations of two or three nonlinear terms from distinct 
minima resulted in a model whose AIC was less than that of models 
containing a single quadratic term 

prints resulted in reductions in the AIC and thus reflect 
statistically independent interactions. 

3.2 Role of near-periodicity in the data 

The highly stereotyped and nearly periodic nature of the 
3/s spike wave discharge in some patients raises the 
question of whether the fingerprint structure merely re- 
flects a basic periodic waveform. We investigated this by 
applying NLAR analysis to a time series derived from an 
ictal record by averaging the signal with respect to its 
repeat period. To implement the averaging process, the 
duration of the repeat period was determined by dividing 
the time between the first and last spikes by the number 
of intervening periods. 

Figure 2A shows the NLAR fingerprint of such 
'periodicized' data derived from the ictal record ana- 
lyzed in detail in Schiff et al. (1994) (for fingerprints of 
periodicized data, we do not indicate significance levels, 
because the assumptions underlying the AIC are not 
valid). The fingerprint derived from strictly periodic data 
has lost all of the features of the fingerprint (Fig. 3A) 
derived from the original record. The minimum at lag 
(8, 17), a feature common to the fingerprints of the 3/s 
discharges in all five patients, is absent. 

A similar analysis of periodicized data from patients 
3-5 from Schiff et al. (1994) also yielded obvious distor- 
tions of the fingerprint. For example, Fig. 3B shows the 
fingerprint of periodicized data from patient 4. Again, the 
minimum at lag (8, 17), a main feature of the fingerprint of 
the raw data, is absent. The data from patient 2 could not 
be analyzed in this fashion because the fragmented na- 
ture of the ictal discharge prevented determination of an 
accurate period to serve as the basis for averaging. How- 
ever, the observation that the NLAR fingerprint derived 
from this fragmented record (Fig. 4A of Schiff et al. 1994) 
is nearly identical to that derived from the continuous 
discharge of patient 1 (Fig. 3A) provides further evidence 
that the NLAR features do not merely represent 
periodicity in the data. 
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Fig. 2. A NLAR fingerprint derived from an ictal discharge recorded 
from patient 1 (Fig. 3A), after averaging the data with respect to its 
mean repeat period. Each contour line represents 0.25% of the variance 
of the original data. B NLAR fingerprint derived from an ictal dis- 
charge recorded from patient 1 (Fig. 3A), after averaging the data with 
respect to a repeat period which stretched uniformly from the beginning 
to the end of the record 

Inspec t ion  of the ictal  d ischarge  f rom pa t ien t  1 
(Fig. 3A) shows tha t  the  pe r iod  of  the d ischarge  slows 
down  with time. Thus,  averag ing  with respect  to an 
overal l  repea t  pe r iod  as descr ibed  above  might  combine  
toge ther  n o n c o r r e s p o n d i n g  par t s  of the wave. To reduce 
this d i s tor t ion ,  we also ave raged  the record  of Fig. 3A 
with respect  to a pe r iod  whose  d u r a t i o n  s t re tched uni-  
formly f rom the beginning  to the end of  the record.  
F igure  2B shows the N L A R  f ingerpr int  der ived f rom this 
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Fig. 3. A NEAR fingerprint derived from patient 1 of Schiff et aL 
(]994) reproduced. Each time unit ( j  or k) represents 8 ms. Tickmarks 
point downhill, and each contour line represents 0.25% of the variance. 
Statistical significance is indicated by placing a small dot at the coordin- 
ates (j,k) for which the reduction in variance satisfies N A V j ,  k > 4. 
B NLAR fingerprint derived from an ictal discharge recorded from 
Patient 4 of Schiff et al. (1994), after averaging the data with respect to 
its mean repeat period. Each contour line represents 0.01% of the 
variance of the original data 

record.  The  qual i ta t ive  features of the f ingerpr int  have 
indeed been recovered,  a l though  the min ima  are  only 
a b o u t  2/3 as deep as in the or ig inal  N L A R  f ingerpr int  
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(Fig. 3A). This indicates that the fingerprint depends not 
only on the average 3/s waveform, but also on cycle-to- 
cycle variations and fluctuations about this average. The 
EEG features that shape the fingerprint cannot be repro- 
duced by simply a gradual stretching of an average wave- 
form. Rather, the fingerprint represents, in part, more 
subtle deterministic period-to-period variations in the 
discharge. 

3.3 Stability analysis 

The NLAR models which underlie the fingerprints are 
dynamical systems which evolve in discrete time. Fixed 
points and periodic orbits are key indicators of the be- 
havior of such systems. In this section we examine the 
existence and stability of fixed points and two-cycles of 
the NLAR models to provide insight into the relation- 
ship of the linear and nonlinear terms. Following Feigen- 
baum (1983), we define a vector state variable I1, = 
(Y,, Y,- 1 . . . .  ), and a vector equation: 

Y, = D(Y, -  1) + X,  (3) 

The stability of the autonomous  version of this system 
(X, = 0) at a fixed point Yfix = D(Yflx) depends on 
the eigenvalues of the matrix transformation which best 
approximates D at the fixed point. If the maximum 
eigenvalue of this matrix has absolute value less than 1, 
then the fixed point is stable. If the maximum eigenvalue 
of this matrix has absolute value greater than 1, then the 
fixed point is unstable. 

3.3.1 Findings. The results of this analysis applied to the 
data of patient 1 (ictal discharge of Fig. 3B, Schiff et al. 
1994) are shown in Table 1. The LAR model has a single 
stable fixed point. NLAR models with one, two, or three 
quadratic terms all had two fixed points, one relatively 
near the fixed point of the LAR model (within 27 pV), 
and one at a great distance (106-2015 ~tV). The unex- 
plained variance for these models was typically 700 taV 2, 
which corresponded to a standard deviation for the driv- 
ing terms x,  of approximately 26 laV or less. That  is, the 
'near '  fixed point was always within the range explored 
by the driving terms, and the second fixed point was 
never in that range. The maximum eigenvalue at the 
near fixed point of the NLAR model ranged from 0.962 
to 1.025: stability in 10 of 14 cases, minimal instability in 
the remaining 4 cases. The maximum eigenvalue asso- 
ciated with the distant fixed point always indicated deci- 
dedly unstable behavior: it ranged from 1.087 to 5.542. 
A two-cycle was present for one of the 14 NLAR models 
shown in Table 1. This two-cycle was unstable, and 
positioned far away from the fixed point of the linear 
model. 

This analysis, and a similar analysis of the models 
derived from the other data sets, shows that the addition 
of one or more quadratic terms results in (i) a small shift 
of the fixed point of the LAR model and (ii) a new, 
unstable fixed point far from the fixed point of the linear 
model. Because the second fixed point is generally 
far beyond the range explored by the time series, it 

Table 1. Stability analysis of LAR and NLAR models derived from 
a 3/s seizure from patient 1 of Schiff et al. (1994). Positions of fixed 
points in laV; variance in ~aV 2. Data from Fig. 3B of Schiff et al. (1994) 

Nonlinear terms F ixed  M a x i m u m  Variance 
points  eigenvalue 

None (LAR only) 0.3 0.9757 945 
(1,9) 122.4 1.2390 797 

- 4.5 1.0063 
(5,8) - 157.4 1.1449 778 

3.9 0.9620 
(8, 17) - 155.1 1.1142 826 

3.3 1.0249 
(15, 15) - 203.3 1.0868 866 

27.1 0.9801 
(1,9) (5,8) 2014.9 5.5418 705 

0.6 0.9479 
(1,9) (8,17) 712.5 2.7178 756 

- 1.4 1.0171 
(1,9) (15, 15) 251.1 1.5630 729 

25.8 0.9799 
(5,8) (8, 17) - 118.2 1.1224 736 

4.3 0.9905 
(5,8) (15, 15) - 126.6 1.1130 750 

16.8 0.9811 
(15, 15) (8, 17) - 121.4 1.1001 777 

17.8 1.0218 
(1,9) (5,8) (15, 15) a - 606.0 1.2375 687 

15.9 0.9652 
(5,8) (8,17)(15,15) - 108.6 1.1110 722 

14.1 0.9926 
(1,9) (8,17) (15, 15) - 792.1 1.3104 720 

19.7 0.9994 
(1,9) (5, 8) (8, 17) - 489.4 1.1877 701 

0.7 0.9755 

a Model exhibits an unstable two-cycle ( -  792.7, - 1219.1) 

is not relevant to the dynamics of the ictal discharge. 
Two-cycles, when present, were always unstable and 
positioned far from the range explored by the time series. 
That  is, the occasional two-cycles appear  to be conse- 
quences of the quadratic fit per se, and not of the intrinsic 
dynamics. 

We emphasize that the tools and concepts used here 
(stability analysis, fixed points, two-cycles) are also used 
by those investigating chaotic dynamics, but here they 
play a different role: the stability analysis of the models 
evidently does not reflect the global stability properties of 
the EEG. The NLAR models represent a small adjust- 
ment to the LAR model valid for a particular range of 
signal size. The global behavior of the NLAR model is 
not necessarily related to global dynamics of the EEG. 

4 D i s c u s s i o n  

4.1 Interpretation of the fingerprints 

Before suggesting a possible means to interpret the fin- 
gerprints, we would like to exclude certain alternative 
interpretations. One possibility is that the fingerprints' 
structure was somehow related to discrete sampling of 
the data. This possibility is ruled out by a comparison of 
NLAR fingerprints obtained from records sampled at 



different intervals done in Schiff et al. (1994). The lag 
numbers associated with positions of features in the fin- 
gerprints depended on the sampling rate, in a manner 
that the lag times they represented were independent of 
sampling rate. 

A second possibility is that the fingerprints are a tri- 
vial consequence of the highly periodic nature of the ictal 
records analyzed. The evidence against this is (a) the 
fingerprints derived from nearly continuous 3/s records 
(patient 1, Fig. 2 of Schiffet al. 1994) were similar to those 
derived from very fragmented records (patient 2, Fig. 3A 
of Schiff et al. 1994); (b) the fingerprint of a highly peri- 
odic, complex, partial seizure discharge (patient 6, 
Fig. 4B of Schiff et al. 1994) was dramatically different 
from the fingerprints of all of the 3/s discharges and (c) 
fingerprints of 'periodicized' data (Figs. 2 and 3) differed 
from fingerprints of the original records. 

A third possibility was that the quadratic NLAR 
models which underlie the fingerprints involved an im- 
proved representation of the global dynamics of the ictal 
EEG. This potentially very interesting possibility was 
ruled out by an analysis of the locatiofl and character of 
stable points and two-cycles (Table 1). 

In view of these findings, we think it is reasonable to 
interpret NLAR fingerprints in a manner which general- 
izes the interpretation of LAR models. A LAR model is 
a difference equation which corresponds to the differen- 
tial equation of a physical system whose output y, is the 
result of applying linear feed-back to a noise input x,. 
The coefficients ai of the LAR model represent the im- 
pulse response of the linear feedback at time lag i. For 
a NLAR model, the NLAR terms may be considered to 
represent nonlinear feedback. In this interpretation, the 
coefficients c j ,  k represent a generalization of the impulse 
response, expressing the interaction of inputs at time lags 
(j,k). That is, the array of coefficients C~,k represent an 
approximation to the second-order Volterra kernel 
(Marmarelis and Marmarelis 1978) of a non-linear feed- 
back filter. The justification for this interpretation (des- 
pite the fact that each Cj, k was calculated individually) is 
that: (i) individual non-linear terms, though significant, 
account for a relatively small portion of the residual 
variance, and (ii) individual terms from different minima 
represent independent contributions to the model 
(Fig. 1). We emphasize that the contour maps do not 
represent second-order Voiterra kernels of a 'system' 
whose output is the EEG. In principle, it is not possible 
to calculate a Volterra kernel for the input-output rela- 
tion without access to the inputs to the system. To an 
extent, the fingerprint of nonlinear terms approximates 
a Volterra kernel. However, it is the kernel of a presumed 
nonlinear feedback loop between output and assumed 
white-noise input, rather than that of the input-output 
relationship itself. 

Once the array of individually fitted Cj.k are con- 
sidered to be akin to the second-order Volterra kernel 
Kz(tl, t2) of an effective feedback, standard tools of the 
Volterra-Wiener theory (Korenberg 1973; Marmarelis 
and Marmarelis 1978) may be used to interpret these 
maps. [As shown in Victor and Canel (1992), the finger- 
prints, which are maps of the reduction in variance, 
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correspond closely to the arrays Cj, k. ] There is no general 
procedure for deducing a system model from a kernel, 
but it is possible to ask whether certain simple nonlinear 
systems are consistent with the observed fingerprints. For 
a non-linear system consisting of a linear filter with 
impulse response G(t) followed by a static nonlinearity, 
the second-order kernel has the form: 

Kz(q ,  t2) = aG(tO G(t2) (4) 

The second-order kernel of a system consisting of a static 
nonlinearity followed by a linear filter with impulse re- 
sponse H(t) has the form: 

~aH(tl),  tl = t2 
K2(tl ' t2) = (0, tl ~ t2 (5) 

For a system consisting of a linear filter with impulse 
response G(t), followed by a static nonlinearity, followed 
by a second linear filter with impulse response H(t), the 
second-order kernel has the form: 

aG(t, - t) G(t2 - t) H(t) dt (6) 
o 

Equation (4) implies that the second-order kernel of 
linear-~static nonlinear systems has prominent con- 
tours running parallel to the axes, and the largest values 
on the diagonal tl = t2(j = k). This is not seen in any of 
the fingerprints of 3/s discharges. The square appearance 
of the fingerprint of the complex partial seizure record 
(Fig. 4B, Schiff et al. 1994) is suggestive of this feature, 
with G(t) peaking at approximately 48 ms (lag 6). 

Equation (5) implies that the second-order kernel of 
static nonlinear ~ linear systems would have all of its 
significant values on the diagonal. This is not seen in any 
of the fingerprints. Finally, (6) implies that the second- 
order kernel would look similar to that of (4), but with 
peaks spread out parallel to the diagonal according to 
H(t). Such spreading can produce an off-diagonal ridge, 
but only if the ridge is accompanied by an on-diagonal 
feature of similar size. However, the fingerprints from all 
three patients with isolated 3/s seizures had off-diagonal 
ridges (24 ms off the diagonal, ranging from lags of 40 to 
60 ms) without an accompanying on-diagonal feature at 
corresponding lags. 

The simple cascade systems described by (4)-(6) can- 
not account for the qualitative features of the NLAR 
fingerprints of 3/s seizure discharges. While it is useful to 
be able to exclude models, it would be more satisfying to 
also identify models that are consistent with the finger- 
prints. One possibility is that each of the fingerprint 
features represent nonlinear interactions which are not 
only statistically independent, but also biologically inde- 
pendent - and that a more appropriate model is a paral- 
lel combination of several such cascades (Korenberg 
1987). This possibility is suggested by the observation 
that in patients 4 and 5 (from Schiff et al. 1994), some of 
the features of the fingerprint are lost. Parallel combina- 
tions of cascade systems might reproduce the observed 
fingerprints, but such models have so many parameters, 
that it is unclear whether such a fit has any explanatory 
value in this context. 
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A more satisfying mechanistic interpretation of 
the fingerprints would rest on reproducing the observed 
kernels with a specific model of nonlinear dynamics, such 
as that proposed by Wilson and Cowan (1972). However, 
these simple models cannot account for the difference 
between the fingerprints of the periodicized data and 
those of the original data. The minima of the fingerprint 
of an ictal discharge differ from those obtained from 
periodicized data, even after stretching the waveform. 
This implies that there are contributions to the finger- 
print related to cycle-to-cycle variations of the discharge, 
including (but not limited to) gradual stretching in time. 
Models of ictal discharges based on limit cycle behavior 
(Wilson and Cowan 1972; Kawahara 1980) are unlikely 
to have this feature. 
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